metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Chlorido(phenanthren-9-yl)bis-(triphenylphosphane)nickel(II)

Xiangyang Lei* and Karla A. Obregon

Department of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA

Correspondence e-mail: xlei@lamar.edu

Received 28 July 2011; accepted 9 August 2011

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.057; data-to-parameter ratio = 13.9.

The title compound, $[Ni(C_{14}H_9)Cl(C_{18}H_{15}P)_2]$, was synthesized from the reaction between 9-chlorophenanthrene, $NiCl_2 \cdot 6H_2O$ and triphenylphosphane in ethanol. The bond angles around the Ni^{II} atom indicate that it exists in a slightly distorted square-planar geometry.

Related literature

For the synthesis, see: Soolinger *et al.* (1990). For analogues and related applications, see: Rosen *et al.* (2011); Zim *et al.* (2001); Chen & Yang (2007*a*,*b*); Gao & Yang (2008); Zhou *et al.* (2009); Roma *et al.* (2011); Liu *et al.* (2008).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Ni}(\mathrm{C}_{14}\mathrm{H}_9)\mathrm{Cl}(\mathrm{C}_{18}\mathrm{H}_{15}\mathrm{P})_2] \\ & M_r = 795.91 \\ & \mathrm{Orthorhombic}, \ & P2_12_12_1 \\ & a = 11.090 \ (5) \ \mathrm{\AA} \\ & b = 15.204 \ (7) \ \mathrm{\AA} \\ & c = 23.679 \ (10) \ \mathrm{\AA} \end{split}$$

V = 3993 (3) Å³ Z = 4Mo K α radiation $\mu = 0.67 \text{ mm}^{-1}$ T = 110 K $0.59 \times 0.46 \times 0.23 \text{ mm}$

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
T_{\rm min} = 0.692, T_{\rm max} = 0.863
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.057$ S = 1.02 6780 reflections 488 parametersH-atom parameters constrained 53371 measured reflections 6780 independent reflections 6359 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$

 $\begin{array}{l} \Delta \rho_{max} = 0.26 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.14 \ e \ \mathring{A}^{-3} \\ Absolute \ structure: \ Flack \ (1983), \\ 2986 \ Friedel \ pairs \\ Flack \ parameter: \ 0.000 \ (7) \end{array}$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Welch Foundation (V-004) for financial support. We are very grateful to Dr Joseph Reibenspies at Texas A & M University for the X-ray crystallographic analysis. The X-ray diffractometers, small angle scattering instrumentation and crystallographic computing systems in the X-ray Diffraction Laboratory at the Department of Chemistry, Texas A & M University, were purchased with funds provided by the National Science Foundation (CHE-9807975, CHE-0079822 and CHE-0215838).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2114).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, C. & Yang, L. M. (2007a). Tetrahedron Lett. 48, 2427-2430.
- Chen, C. & Yang, L. M. (2007b). J. Org. Chem. 72, 6324-6327.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gao, C. Y. & Yang, L. M. (2008). J. Org. Chem. 73, 1624–1627.
- Liu, Y.-H., Chen, C. & Yang, L.-M. (2008). Acta Cryst. E64, m1225.
- Roma, A. D., Yang, H. J., Millione, S., Capacchione, C., Roviello, G. & Grassi, A. (2011). *Inorg. Chem. Commun.* 14, 542–544.
- Rosen, B. M., Quasdorf, K. W., Wilson, D. A., Zhang, N., Resmerita, A., Garg, N. K. & Percec, V. (2011). *Chem. Rev.* 111, 1346–1416.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soolinger, J. V., Verkruijsse, H. D., Keegstra, M. A. & Brandsma, L. (1990). Synth. Commun. 20, 3153–3156.
- Zhou, L., Feng, X., He, R. & Bao, M. (2009). J. Coord. Chem. 62, 2824–2831.
 Zim, D., Lando, V. R., Dupont, J. & Monteiro, A. (2001). Org. Lett. 3, 3049–3051.

Acta Cryst. (2011). E67, m1272 [doi:10.1107/S1600536811032326]

trans-Chlorido(phenanthren-9-yl)bis(triphenylphosphane)nickel(II)

X. Lei and K. A. Obregon

Comment

Ni catalysts have attracted considerate attention in recent years. In comparison with Pd and Pt catalysts, Ni catalysts are more desirable from the standpoints of economics and versatility (Rosen *et al.*, 2011). Ni-catalyzed cross-coupling reactions play an important role in the formation of carbon-carbon and carbon-heteroatom bonds. The mechanism of Ni-catalyzed cross-coupling reactions was considered similar to the Pd-catalyzed cross-couplings (Rosen *et al.*, 2011). The catalytic cycle in both cases involves three sequential steps: oxidative addition, translation, and reductive elimination (Zim *et al.*, 2001). Ni(II) σ -aryl complex is believed to be the oxidative addition product in the Ni-catalyzed cross-coupling reactions. Soolinger *et al.* (1990), Chen & Yang (2007*a*,*b*), and Gao & Yang (2008) have demonstrated that isolatable Ni(II) σ -aryl complexes can be directly used as efficient catalysts for cross-coupling reactions. In addition, Zhou *et al.* (2009) have reported that Ni(II) σ -aryl complexes can catalyze dehalogenation of aryl chlorides, and Roma *et al.* (2011)have shown that Ni(II) σ -aryl complexes can promote the polymerization of methylmethacrylate.

As further advances in Ni(II) σ -aryl complexes as catalyst are necessary, we synthesized the title compound in an analogous fashion to the literature procedure (Soolinger *et al.*, 1990). The title compound is air- and thermally stable. The bond angles around Ni of the complex indicate that it exists in a slightly distorted square-planar geometry, which is similar to the geometry of its 1-naphthyl (Zhou *et al.*, 2009) and 4-acetylnaphthyl (Liu *et al.*, 2008) analogues. It is noteworthy that there are potentially C—H···Cl hydrogen bond intramolecular interactions, and the donor-acceptor distances are 2.862 Å for C22—H22A···Cl1 and 2.887 Å for C44—H44A···Cl1. There are also potentially C—H···Cl intermolecular interactions, and the donor-acceptor distances are 2.747 Å for C23—H23A···Cl1ⁱ and 2.872 Å for C43—H43A···Cl1ⁱ (symmetry codes: (i) -1/2 + x, 3/2 - y, - z). Intramolecular C—H··· π interactions are observed as the distances from C32—H32A and C33—H33A to the centroid of the plane C1—C2—C3—C8—C9—C14 of the phenanthrene ring are 2.788 and 2.588 Å, respectively. The application of the title compound as catalyst in cross-coupling reactions is under investigation.

Experimental

A stirred mixture of 1.20 g (5.0 mmol) of NiCl₂.6H₂O, 2.88 g (11.0 mmol) of triphenylphosphine and 25 ml of 96% ethanol was heated until a gentle reflux started. 9-Chlorophenanthrene (10.0 mmol, 2.13 g, excess) was then added, followed by zinc dust (0.33 g, 5.0 mmol, Merck, analytical grade) over 5 min. The dark-green mixture very soon turned yellow. After stirring and heating under reflux for 1.5 h (under nitrogen), the mixture was cooled to 293 K. Four 2 ml portions of 30% aqueous hydrochloric acid were added over 15 min. After stirring for 1.5 h, the solid was filtered off on a sintered-glass funnel and successively washed with 5 ml of ethanol, twice with 5 ml of 1 *M* aqueous hydrochloric acid, twice with 5 ml of 96% ethanol and once with 5 ml of pentane. The yellowish solid (3.10 g) was dried *in vacuo*. Single crystals suitable for X-ray diffraction were obtained by recrystallization from CH₂Cl₂/hexanes.

Refinement

All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms bound to carbon atoms were placed in idealized positions and constrained to ride on their parent atoms, with d(C-H) = 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$.

F(000) = 1656 $D_{\rm x} = 1.324 \text{ Mg m}^{-3}$

 $\theta = 2.2-26.7^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 110 KPlate, orange

 $0.59 \times 0.46 \times 0.23 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 6845 reflections

Figures

Fig. 1. A view of the molecular structure. Ellipsoids are drawn at the 30% probability level.

trans-Chlorido(phenanthren-9-yl)bis(triphenylphosphane)nickel(II)

Crystal data
[Ni(C ₁₄ H ₉)Cl(C ₁₈ H ₁₅ P) ₂]
$M_r = 795.91$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
a = 11.090 (5) Å
<i>b</i> = 15.204 (7) Å
<i>c</i> = 23.679 (10) Å
$V = 3993 (3) \text{ Å}^3$
Z = 4

Data collection

6780 independent reflections
6359 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.048$
$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
$h = -13 \rightarrow 13$
$k = -18 \rightarrow 18$
$l = -28 \rightarrow 28$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.024$	H-atom parameters constrained

$P(F^2) = 0.057$	$w = 1/[\sigma^2(F_0^2) + (0.0354P)^2]$
WR(F) = 0.057	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.002$
6780 reflections	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
488 parameters	$\Delta \rho_{min} = -0.14 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 2986 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.000 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.56721 (2)	0.527489 (15)	-0.047248 (9)	0.02000 (7)
Cl1	0.49242 (4)	0.63193 (3)	0.009025 (18)	0.02449 (11)
P1	0.65475 (5)	0.45655 (3)	0.024960 (19)	0.02055 (11)
P2	0.50725 (4)	0.59607 (3)	-0.125640 (19)	0.02011 (11)
C1	0.65053 (18)	0.44916 (12)	-0.09623 (8)	0.0215 (4)
C2	0.76625 (18)	0.46946 (15)	-0.11185 (8)	0.0264 (4)
H2A	0.8004	0.5235	-0.0997	0.032*
C3	0.83753 (19)	0.41080 (15)	-0.14631 (8)	0.0285 (5)
C4	0.95831 (19)	0.43137 (16)	-0.15978 (10)	0.0373 (6)
H4A	0.9910	0.4862	-0.1482	0.045*
C5	1.0289 (2)	0.37379 (18)	-0.18910 (11)	0.0481 (7)
H5A	1.1103	0.3884	-0.1974	0.058*
C6	0.9811 (3)	0.29272 (18)	-0.20702 (11)	0.0503 (7)
H6A	1.0305	0.2524	-0.2272	0.060*
C7	0.8645 (2)	0.27199 (17)	-0.19557 (9)	0.0409 (6)
H7A	0.8331	0.2174	-0.2083	0.049*
C8	0.7884 (2)	0.33008 (14)	-0.16497 (9)	0.0298 (5)
C9	0.66463 (19)	0.30797 (14)	-0.15135 (8)	0.0272 (5)
C10	0.6079 (2)	0.23092 (15)	-0.16979 (9)	0.0355 (5)
H10A	0.6516	0.1905	-0.1925	0.043*
C11	0.4903 (2)	0.21231 (15)	-0.15580 (9)	0.0387 (6)
H11A	0.4536	0.1598	-0.1691	0.046*
C12	0.4251 (2)	0.26995 (14)	-0.12229 (9)	0.0343 (5)
H12A	0.3441	0.2567	-0.1124	0.041*

C13	0.47822 (19)	0.34736 (14)	-0.10304 (8)	0.0292 (5)
H13A	0.4328	0.3866	-0.0802	0.035*
C14	0.59785 (18)	0.36821 (13)	-0.11689 (8)	0.0242 (4)
C15	0.36705 (18)	0.65927 (14)	-0.12249 (8)	0.0253 (4)
C16	0.2761 (2)	0.63172 (17)	-0.08626 (9)	0.0359 (5)
H16A	0.2892	0.5835	-0.0615	0.043*
C17	0.1658 (2)	0.67511 (19)	-0.08639 (10)	0.0473 (7)
H17A	0.1035	0.6565	-0.0616	0.057*
C18	0.1462 (2)	0.74547 (18)	-0.12253 (10)	0.0451 (6)
H18A	0.0710	0.7753	-0.1221	0.054*
C19	0.2356 (2)	0.77222 (16)	-0.15896 (10)	0.0379 (6)
H19A	0.2215	0.8199	-0.1840	0.046*
C20	0.34575 (19)	0.72989 (14)	-0.15910 (9)	0.0286 (5)
H20A	0.4074	0.7488	-0.1842	0.034*
C21	0.62413 (17)	0.67544 (13)	-0.14485 (8)	0.0230 (4)
C22	0.69398 (18)	0.71257 (14)	-0.10193 (9)	0.0259 (5)
H22A	0.6773	0.6984	-0.0637	0.031*
C23	0.7876 (2)	0.77001 (15)	-0.11455 (9)	0.0315 (5)
H23A	0.8341	0.7953	-0.0850	0.038*
C24	0.81292 (19)	0.79046 (15)	-0.17089 (9)	0.0318 (5)
H24A	0.8782	0.8285	-0.1797	0.038*
C25	0.74276 (19)	0.75518 (14)	-0.21397(10)	0.0331 (5)
H25A	0.7591	0.7699	-0.2522	0.040*
C26	0.64865 (19)	0.69838 (14)	-0.20099(8)	0.0265 (5)
H26A	0.6004	0.6748	-0.2305	0.032*
C27	0.48354 (17)	0.53297 (13)	-0.19152 (7)	0.0222 (4)
C28	0 36738 (19)	0 51242 (14)	-0.20905 (8)	0.0278 (5)
H28A	0 3002	0.5325	-0.1878	0.033*
C29	0 3486 (2)	0 46246 (15)	-0.25774(9)	0.0349 (5)
H29A	0.2687	0.4483	-0.2690	0.042*
C30	0.4445(2)	0 43348 (15)	-0.28973(9)	0.0353(5)
H30A	0.4310	0 4001	-0.3231	0.0323 (3)
C31	0 5605 (2)	0 45350 (14)	-0.27274(8)	0.012
H31A	0.6272	0.4337	-0 2945	0.037*
C32	0.58031 (19)	0 50237 (13)	-0.22399(8)	0.0258 (4)
H32A	0.6605	0.5152	-0.2126	0.021*
C33	0.76549 (19)	0.30173 (14)	-0.01596 (8)	0.031 0.0267 (5)
H33A	0.8154	0.3402	-0.0372	0.0207 (3)
C34	0.3134	0.3402 0.21147 (14)	-0.02159(9)	0.032
H34A	0.7797 (2)	0.1888	-0.0467	0.025*
C35	0.000(2)	0.1533 0.15427(15)	0.0407	0.033
H35A	0.7080 (2)	0.13427 (13)	0.0052	0.0330 (3)
1155A C26	0.7178	0.0925 0.18761 (14)	0.0052	0.040
H36A	0.0218 (2)	0.18701 (14)	0.04507 (11)	0.0337 (3)
C37	0.60811 (18)	0.27826 (12)	0.05175 (9)	0.045
U27A	0.5400	0.27020 (13)	0.03173 (9)	0.0290 (3)
ПЭ/А С29	0.3477	0.3000	0.0773	0.030*
C30	0.07003(17)	0.33003(13)	0.02032(8)	0.0222(4)
C39	0.00443(17)	0.30331(13)	0.05000 (7)	0.0225 (4)
C40	0.90278(18)	0.45509 (15)	0.05382 (8)	0.0275(5)

H40A	0.8941	0.3915	0.0591	0.033*
C41	1.0134 (2)	0.49305 (15)	0.06328 (9)	0.0315 (5)
H41A	1.0800	0.4588	0.0756	0.038*
C42	1.02723 (19)	0.58275 (15)	0.05485 (9)	0.0325 (5)
H42A	1.1038	0.6094	0.0604	0.039*
C43	0.9301 (2)	0.63360 (13)	0.03836 (8)	0.0320 (5)
H43A	0.9395	0.6951	0.0329	0.038*
C44	0.81898 (18)	0.59436 (14)	0.02980 (8)	0.0265 (4)
H44A	0.7518	0.6295	0.0192	0.032*
C45	0.58119 (18)	0.46590 (13)	0.09426 (7)	0.0235 (4)
C46	0.6465 (2)	0.46476 (15)	0.14471 (8)	0.0316 (5)
H46A	0.7321	0.4650	0.1435	0.038*
C47	0.5875 (2)	0.46324 (17)	0.19689 (8)	0.0380 (5)
H47A	0.6328	0.4635	0.2310	0.046*
C48	0.4638 (2)	0.46144 (15)	0.19862 (8)	0.0345 (5)
H48A	0.4233	0.4591	0.2339	0.041*
C49	0.3976 (2)	0.46299 (15)	0.14867 (9)	0.0311 (5)
H49A	0.3120	0.4622	0.1500	0.037*
C50	0.45626 (18)	0.46568 (14)	0.09676 (8)	0.0264 (4)
H50A	0.4105	0.4674	0.0629	0.032*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02228 (12)	0.01963 (13)	0.01808 (11)	0.00345 (10)	0.00132 (10)	-0.00025 (10)
Cl1	0.0339 (3)	0.0210 (2)	0.0185 (2)	0.0106 (2)	0.00216 (19)	-0.00120 (17)
P1	0.0232 (2)	0.0196 (3)	0.0189 (2)	0.0014 (2)	0.00066 (19)	0.00014 (19)
P2	0.0200 (2)	0.0211 (3)	0.0192 (2)	0.0012 (2)	-0.0001 (2)	0.00030 (19)
C1	0.0253 (10)	0.0201 (11)	0.0192 (9)	0.0044 (8)	-0.0008 (8)	0.0023 (8)
C2	0.0291 (11)	0.0271 (11)	0.0230 (10)	0.0051 (10)	0.0002 (8)	0.0050 (9)
C3	0.0296 (11)	0.0336 (12)	0.0224 (10)	0.0084 (10)	0.0051 (9)	0.0095 (9)
C4	0.0291 (12)	0.0431 (14)	0.0397 (12)	0.0084 (10)	0.0064 (10)	0.0168 (11)
C5	0.0366 (14)	0.0590 (18)	0.0486 (14)	0.0147 (12)	0.0174 (11)	0.0199 (13)
C6	0.0603 (17)	0.0449 (16)	0.0458 (14)	0.0219 (14)	0.0245 (13)	0.0119 (12)
C7	0.0564 (17)	0.0369 (14)	0.0294 (12)	0.0162 (12)	0.0137 (11)	0.0041 (10)
C8	0.0387 (12)	0.0292 (12)	0.0214 (10)	0.0093 (10)	0.0030 (9)	0.0065 (9)
C9	0.0369 (12)	0.0262 (11)	0.0186 (10)	0.0055 (10)	0.0016 (9)	0.0051 (8)
C10	0.0581 (16)	0.0252 (12)	0.0231 (11)	0.0030 (11)	0.0017 (10)	-0.0013 (9)
C11	0.0580 (16)	0.0295 (12)	0.0286 (11)	-0.0104 (12)	-0.0067 (11)	0.0028 (9)
C12	0.0386 (13)	0.0324 (12)	0.0317 (11)	-0.0112 (11)	-0.0052 (10)	0.0069 (10)
C13	0.0368 (12)	0.0267 (11)	0.0242 (10)	0.0001 (9)	0.0009 (9)	0.0027 (8)
C14	0.0317 (11)	0.0206 (10)	0.0204 (9)	0.0016 (9)	-0.0016 (8)	0.0041 (8)
C15	0.0226 (10)	0.0305 (12)	0.0229 (10)	0.0022 (9)	-0.0035 (8)	-0.0069 (9)
C16	0.0275 (12)	0.0529 (15)	0.0273 (11)	0.0050 (11)	0.0031 (9)	0.0064 (10)
C17	0.0261 (12)	0.081 (2)	0.0345 (12)	0.0106 (13)	0.0081 (10)	0.0030 (13)
C18	0.0279 (13)	0.0627 (18)	0.0446 (14)	0.0183 (12)	-0.0054 (11)	-0.0085 (13)
C19	0.0352 (13)	0.0349 (13)	0.0437 (14)	0.0099 (11)	-0.0099 (11)	-0.0031 (11)
C20	0.0248 (11)	0.0279 (12)	0.0330 (11)	0.0030 (9)	-0.0052 (9)	-0.0019 (9)

C21	0.0202 (10)	0.0205 (11)	0.0285 (10)	0.0029 (8)	-0.0024 (8)	0.0030 (8)
C22	0.0271 (11)	0.0264 (11)	0.0241 (10)	0.0014 (9)	-0.0014 (9)	0.0011 (8)
C23	0.0269 (11)	0.0310 (12)	0.0365 (12)	-0.0009 (10)	-0.0075 (9)	-0.0010 (10)
C24	0.0244 (11)	0.0301 (12)	0.0410 (13)	-0.0030 (9)	0.0033 (10)	0.0042 (10)
C25	0.0323 (13)	0.0340 (13)	0.0329 (12)	-0.0025 (10)	0.0030 (10)	0.0056 (10)
C26	0.0264 (11)	0.0278 (11)	0.0254 (10)	-0.0023 (9)	-0.0023 (9)	0.0032 (9)
C27	0.0260 (10)	0.0198 (10)	0.0208 (8)	0.0011 (9)	-0.0009 (8)	0.0023 (8)
C28	0.0267 (11)	0.0272 (12)	0.0295 (10)	0.0003 (9)	-0.0012 (9)	-0.0008 (9)
C29	0.0354 (12)	0.0337 (12)	0.0357 (11)	-0.0023 (11)	-0.0091 (10)	-0.0031 (10)
C30	0.0488 (14)	0.0311 (12)	0.0260 (10)	-0.0010 (11)	-0.0045 (11)	-0.0048 (9)
C31	0.0388 (12)	0.0300 (12)	0.0248 (10)	0.0017 (11)	0.0091 (9)	-0.0002 (9)
C32	0.0264 (11)	0.0277 (11)	0.0233 (9)	-0.0010 (9)	0.0018 (8)	0.0022 (8)
C33	0.0302 (11)	0.0260 (11)	0.0238 (10)	0.0026 (9)	-0.0011 (9)	0.0026 (9)
C34	0.0304 (12)	0.0271 (12)	0.0307 (11)	0.0062 (9)	-0.0043 (9)	-0.0030 (9)
C35	0.0373 (12)	0.0212 (11)	0.0422 (13)	0.0002 (10)	-0.0084 (10)	0.0001 (10)
C36	0.0327 (12)	0.0256 (12)	0.0488 (13)	-0.0056 (9)	-0.0014 (11)	0.0050 (11)
C37	0.0251 (11)	0.0295 (12)	0.0342 (11)	0.0005 (9)	0.0020 (9)	0.0031 (10)
C38	0.0234 (10)	0.0217 (10)	0.0216 (9)	0.0006 (8)	-0.0041 (8)	-0.0004 (8)
C39	0.0251 (10)	0.0239 (10)	0.0180 (9)	-0.0004 (8)	0.0021 (8)	0.0001 (8)
C40	0.0306 (11)	0.0215 (11)	0.0305 (10)	-0.0008 (8)	-0.0020 (9)	-0.0001 (9)
C41	0.0260 (11)	0.0343 (12)	0.0344 (11)	0.0020 (10)	-0.0017 (9)	-0.0033 (9)
C42	0.0324 (12)	0.0362 (13)	0.0288 (11)	-0.0099 (10)	0.0028 (9)	-0.0061 (9)
C43	0.0435 (12)	0.0238 (11)	0.0285 (11)	-0.0071 (10)	0.0022 (10)	0.0001 (9)
C44	0.0312 (11)	0.0231 (10)	0.0252 (10)	-0.0010 (9)	0.0005 (8)	0.0024 (8)
C45	0.0299 (11)	0.0189 (10)	0.0217 (9)	-0.0011 (9)	0.0025 (8)	-0.0011 (8)
C46	0.0294 (11)	0.0398 (13)	0.0257 (10)	0.0010 (11)	-0.0010 (8)	-0.0010 (10)
C47	0.0425 (14)	0.0489 (15)	0.0225 (10)	-0.0009 (12)	-0.0034 (9)	-0.0010 (10)
C48	0.0449 (14)	0.0355 (13)	0.0232 (10)	-0.0007 (11)	0.0102 (9)	-0.0028 (9)
C49	0.0320 (11)	0.0284 (12)	0.0331 (11)	-0.0021 (10)	0.0054 (9)	-0.0012 (10)
C50	0.0288 (11)	0.0249 (10)	0.0255 (9)	-0.0017 (9)	-0.0015 (8)	-0.0001 (9)

Geometric parameters (Å, °)

Ni1—C1	1.9020 (19)	C23—H23A	0.9500
Ni1—P2	2.2305 (9)	C24—C25	1.391 (3)
Ni1—Cl1	2.2327 (8)	C24—H24A	0.9500
Ni1—P1	2.2426 (8)	C25—C26	1.389 (3)
P1—C39	1.827 (2)	C25—H25A	0.9500
P1—C45	1.8381 (19)	C26—H26A	0.9500
P1—C38	1.843 (2)	C27—C28	1.389 (3)
P2—C21	1.829 (2)	C27—C32	1.400 (3)
P2—C15	1.829 (2)	C28—C29	1.396 (3)
P2—C27	1.850 (2)	C28—H28A	0.9500
C1—C2	1.371 (3)	C29—C30	1.378 (3)
C1—C14	1.448 (3)	C29—H29A	0.9500
C2—C3	1.444 (3)	C30—C31	1.383 (3)
C2—H2A	0.9500	C30—H30A	0.9500
C3—C4	1.412 (3)	C31—C32	1.390 (3)
C3—C8	1.414 (3)	C31—H31A	0.9500

C4—C5	1.364 (3)	C32—H32A	0.9500
C4—H4A	0.9500	C33—C34	1.388 (3)
C5—C6	1.407 (4)	C33—C38	1.398 (3)
С5—Н5А	0.9500	С33—Н33А	0.9500
C6—C7	1.358 (4)	C34—C35	1.386 (3)
С6—Н6А	0.9500	C34—H34A	0.9500
С7—С8	1.420 (3)	C35—C36	1.385 (3)
С7—Н7А	0.9500	C35—H35A	0.9500
C8—C9	1.450 (3)	C36—C37	1.394 (3)
C9—C10	1.400 (3)	C36—H36A	0.9500
C9—C14	1.433 (3)	C37—C38	1.398 (3)
C10—C11	1.375 (3)	С37—Н37А	0.9500
C10—H10A	0.9500	C39—C40	1.392 (3)
C11—C12	1.386 (3)	C39—C44	1.403 (3)
C11—H11A	0.9500	C40—C41	1.387 (3)
C12—C13	1.393 (3)	C40—H40A	0.9500
C12—H12A	0.9500	C41—C42	1.387 (3)
C13—C14	1.403 (3)	C41—H41A	0.9500
C13—H13A	0.9500	C42—C43	1.382 (3)
C15—C16	1.389 (3)	C42—H42A	0.9500
C15—C20	1.400 (3)	C43—C44	1.384 (3)
C16—C17	1.390 (3)	C43—H43A	0.9500
C16—H16A	0.9500	C44—H44A	0.9500
C17—C18	1.387 (4)	C45—C50	1.387 (3)
C17—H17A	0.9500	C45—C46	1.397 (3)
C18—C19	1.375 (4)	C46—C47	1.398 (3)
C18—H18A	0.9500	C46—H46A	0.9500
C19—C20	1.381 (3)	C47—C48	1.373 (3)
C19—H19A	0.9500	С47—Н47А	0.9500
C20—H20A	0.9500	C48—C49	1.392 (3)
C21—C22	1.397 (3)	C48—H48A	0.9500
C21—C26	1.401 (3)	C49—C50	1.391 (3)
C22—C23	1.389 (3)	C49—H49A	0.9500
C22—H22A	0.9500	С50—Н50А	0.9500
C23—C24	1.398 (3)		
C1—Ni1—P2	85.99 (6)	C22—C23—C24	119.7 (2)
C1—Ni1—Cl1	171.79 (6)	С22—С23—Н23А	120.2
P2—Ni1—Cl1	93.06 (4)	C24—C23—H23A	120.2
C1—Ni1—P1	87.33 (6)	C25—C24—C23	120.1 (2)
P2—Ni1—P1	171.26 (2)	C25—C24—H24A	120.0
Cl1—Ni1—P1	92.74 (3)	C23—C24—H24A	120.0
C39—P1—C45	103.80 (9)	C26—C25—C24	119.9 (2)
C39—P1—C38	105.14 (9)	C26—C25—H25A	120.1
C45—P1—C38	101.05 (9)	C24—C25—H25A	120.1
C39—P1—Ni1	108.74 (6)	C25—C26—C21	120.70 (19)
C45—P1—Ni1	116.83 (7)	С25—С26—Н26А	119.7
C38—P1—Ni1	119.63 (6)	C21—C26—H26A	119.7
C21—P2—C15	105.43 (10)	C28—C27—C32	118.18 (18)
C21—P2—C27	103.49 (9)	C28—C27—P2	120.03 (15)

C15—P2—C27	100 72 (9)	C32—C27—P2	121 77 (15)
C21—P2—Ni1	107.71 (7)	C27—C28—C29	120.5 (2)
C15—P2—Ni1	117 71 (7)	C27—C28—H28A	119.8
C27—P2—Ni1	120 11 (7)	C29—C28—H28A	119.8
C_{2} C_{1} C_{14}	118 56 (18)	$C_{30} - C_{29} - C_{28}$	120.9 (2)
C2— $C1$ —Ni1	118 58 (15)	C30-C29-H29A	119.6
C14—C1—Ni1	122.85(15)	C28—C29—H29A	119.6
C1 - C2 - C3	121.7(2)	$C_{29} - C_{30} - C_{31}$	119 21 (19)
C1 - C2 - H2A	1191	C29—C30—H30A	120.4
C3—C2—H2A	119.1	C31—C30—H30A	120.4
C4-C3-C8	119.2 (2)	$C_{30} - C_{31} - C_{32}$	120.4 (2)
C4-C3-C2	120.7(2)	$C_{30} - C_{31} - H_{31A}$	119.8
C_{8} C_{3} C_{2}	120.11 (19)	C_{32} C_{31} H_{31A}	119.8
$C_{5} - C_{4} - C_{3}$	120.11(1)	$C_{31} - C_{32} - C_{27}$	120.8 (2)
$C_5 - C_4 - H_4 A$	119.4	$C_{31} - C_{32} - H_{32A}$	119.6
$C_3 - C_4 - H_4 A$	119.1	$C_{27} - C_{32} - H_{32A}$	119.6
C4-C5-C6	120.0(2)	$C_{24} = C_{32} = C_{38}$	121.0(2)
$C_{4} = C_{5} = C_{0}$	120.0 (2)	C34_C33_H33A	121.0 (2)
C6-C5-H5A	120.0	C38_C33_H33A	119.5
C7	120.0 120.1(2)	$C_{35} - C_{34} - C_{33}$	119.3
C7_C6_H6A	110.0	C35-C34-H34A	120.5 (2)
C5 C6 H6A	110.0	$C_{33} = C_{34} = H_{34A}$	110.8
C_{5}	119.9	$C_{33} = C_{34} = 1154 \text{ A}$	119.0 110.7(2)
$C_{0} = C_{1} = C_{0}$	121.0 (3)	$C_{30} = C_{33} = C_{34}$	119.7 (2)
$C_{0} = C_{1} = H_{1} A$	119.2	$C_{30} = C_{35} = H_{35A}$	120.2
$C_{0} = C_{1} = \Pi/A$	119.2	$C_{34} = C_{35} = H_{35} = H$	120.2
C_{3} C_{8} C_{9}	110.1(2) 110.78(10)	$C_{33} = C_{30} = C_{37}$	120.1 (2)
$C_3 = C_8 = C_9$	119.70(19) 122.1(2)	$C_{33} = C_{30} = H_{30} A$	120.0
$C_{1} = C_{3} = C_{3}$	122.1(2) 118.7(2)	$C_{3}^{26} = C_{30}^{27} = C_{30}^{28}$	120.0
$C_{10} = C_{9} = C_{14}$	110.7(2) 122.4(2)	$C_{30} = C_{37} = C_{38}$	120.9 (2)
$C_{10} - C_{9} - C_{8}$	123.4(2)	C30-C37-H37A	119.5
$C_{14} - C_{9} - C_{8}$	117.90 (19)	$C_{38} - C_{37} - H_{37} A$	117.00 (10)
$C_{11} = C_{10} = C_{9}$	121.0 (2)	$C_{33} = C_{38} = C_{37}$	117.99 (19)
C_{11} C_{10} H_{10A}	119.2	C33-C38-P1	120.79 (15)
$C_{9} = C_{10} = H_{10} A$	119.2	$C_{3}/-C_{3}$	121.17(15)
	120.2 (2)	C40 - C39 - C44	119.01 (18)
CIO-CII-HIIA	119.9	C40-C39-P1	122.85 (15)
	119.9	C44—C39—P1	118.10 (15)
C11 - C12 - C13	120.1 (2)	C41 - C40 - C39	119.98 (19)
C12_C12_H12A	120.0	C41 - C40 - H40A	120.0
C13 - C12 - H12A	120.0	$C_{39} - C_{40} - H_{40A}$	120.0
C12 - C13 - C14	121.0 (2)	C42 - C41 - C40	120.4 (2)
C12C13H13A	119.5	C42—C41—H41A	119.8
C14—C13—H13A	119.5	C40 - C41 - H41A	119.8
C13 - C14 - C9	118.52 (19)	C43 - C42 - C41	120.3 (2)
$C_{13} - C_{14} - C_{1}$	119.05 (18)	C43—C42—H42A	119.9
C9—C14—C1	121.82 (18)	C41—C42—H42A	119.9
C10-C15-C20	119.42 (19)	(42-(43-(44)))	119.01 (19)
C10-C15-P2	118.96 (16)	C42—C43—H43A	120.2
C20—C15—P2	121.39 (16)	C44—C43—H43A	120.2

C15—C16—C17	119.7 (2)	C43—C44—C39	120.7 (2)
C15—C16—H16A	120.2	C43—C44—H44A	119.6
С17—С16—Н16А	120.2	С39—С44—Н44А	119.6
C18—C17—C16	120.3 (2)	C50-C45-C46	118.78 (17)
C18—C17—H17A	119.8	C50-C45-P1	118.76 (15)
С16—С17—Н17А	119.8	C46—C45—P1	122.17 (15)
C19—C18—C17	120.2 (2)	C45—C46—C47	120.9 (2)
C19-C18-H18A	119.9	C45—C46—H46A	119.6
C17-C18-H18A	119.9	C47—C46—H46A	119.6
C18-C19-C20	120.1 (2)	C48—C47—C46	119.60 (19)
C18—C19—H19A	120.0	С48—С47—Н47А	120.2
С20—С19—Н19А	120.0	С46—С47—Н47А	120.2
C19—C20—C15	120.3 (2)	C47—C48—C49	120.08 (18)
С19—С20—Н20А	119.8	C47—C48—H48A	120.0
C15—C20—H20A	119.8	C49—C48—H48A	120.0
C22—C21—C26	118.82 (19)	C50—C49—C48	120.31 (19)
C22—C21—P2	118.61 (15)	С50—С49—Н49А	119.8
C26—C21—P2	122.54 (15)	С48—С49—Н49А	119.8
C23—C22—C21	120.79 (19)	C45—C50—C49	120.32 (19)
C23—C22—H22A	119.6	С45—С50—Н50А	119.8
С21—С22—Н22А	119.6	С49—С50—Н50А	119.8
C1—Ni1—P1—C39	84.48 (9)	P2-C15-C20-C19	174.90 (16)
P2—Ni1—P1—C39	44.27 (16)	C15—P2—C21—C22	96.93 (17)
Cl1—Ni1—P1—C39	-87.30 (7)	C27—P2—C21—C22	-157.73 (16)
C1—Ni1—P1—C45	-158.52 (9)	Ni1—P2—C21—C22	-29.55 (17)
P2—Ni1—P1—C45	161.27 (15)	C15—P2—C21—C26	-85.05 (18)
Cl1—Ni1—P1—C45	29.69 (8)	C27—P2—C21—C26	20.30 (19)
C1—Ni1—P1—C38	-36.20 (10)	Ni1—P2—C21—C26	148.47 (16)
P2—Ni1—P1—C38	-76.41 (16)	C26—C21—C22—C23	-1.1 (3)
Cl1—Ni1—P1—C38	152.02 (8)	P2-C21-C22-C23	176.97 (16)
C1—Ni1—P2—C21	-86.28 (9)	C21—C22—C23—C24	-0.5 (3)
Cl1—Ni1—P2—C21	85.55 (7)	C22—C23—C24—C25	1.7 (3)
P1—Ni1—P2—C21	-46.01 (17)	C23—C24—C25—C26	-1.1 (3)
C1—Ni1—P2—C15	154.82 (10)	C24—C25—C26—C21	-0.6 (3)
Cl1—Ni1—P2—C15	-33.35 (8)	C22—C21—C26—C25	1.7 (3)
P1—Ni1—P2—C15	-164.90 (15)	P2-C21-C26-C25	-176.32 (16)
C1—Ni1—P2—C27	31.63 (10)	C21—P2—C27—C28	-136.92 (17)
Cl1—Ni1—P2—C27	-156.53 (8)	C15—P2—C27—C28	-28.02 (19)
P1—Ni1—P2—C27	71.91 (17)	Ni1—P2—C27—C28	103.04 (16)
P2—Ni1—C1—C2	88.87 (15)	C21—P2—C27—C32	45.10 (18)
Cl1—Ni1—C1—C2	5.2 (5)	C15—P2—C27—C32	154.00 (17)
P1—Ni1—C1—C2	-85.49 (15)	Ni1—P2—C27—C32	-74.95 (17)
P2-Ni1-C1-C14	-92.31 (15)	C32—C27—C28—C29	0.1 (3)
Cl1—Ni1—C1—C14	-176.0 (3)	P2-C27-C28-C29	-177.97 (16)
P1—Ni1—C1—C14	93.33 (15)	C27—C28—C29—C30	-0.8 (3)
C14—C1—C2—C3	-2.4 (3)	C28—C29—C30—C31	0.8 (3)
Ni1—C1—C2—C3	176.45 (14)	C29—C30—C31—C32	-0.1 (3)
C1—C2—C3—C4	-177.19 (18)	C30—C31—C32—C27	-0.6 (3)
C1—C2—C3—C8	0.1 (3)	C28—C27—C32—C31	0.6 (3)

C8—C3—C4—C5	-1.7 (3)	P2-C27-C32-C31	178.65 (15)
C2—C3—C4—C5	175.6 (2)	C38—C33—C34—C35	-0.2 (3)
C3—C4—C5—C6	0.7 (4)	C33—C34—C35—C36	0.0 (3)
C4—C5—C6—C7	0.5 (4)	C34—C35—C36—C37	-0.6 (3)
C5—C6—C7—C8	-0.8 (4)	C35—C36—C37—C38	1.3 (3)
C4—C3—C8—C7	1.4 (3)	C34—C33—C38—C37	0.9 (3)
C2—C3—C8—C7	-175.90 (19)	C34—C33—C38—P1	-176.66 (16)
C4—C3—C8—C9	179.86 (18)	C36—C37—C38—C33	-1.5 (3)
C2—C3—C8—C9	2.5 (3)	C36—C37—C38—P1	176.07 (17)
C6—C7—C8—C3	-0.2 (3)	C39—P1—C38—C33	-51.45 (17)
C6—C7—C8—C9	-178.6 (2)	C45—P1—C38—C33	-159.19 (16)
C3—C8—C9—C10	177.74 (19)	Ni1—P1—C38—C33	71.01 (17)
C7—C8—C9—C10	-3.9 (3)	C39—P1—C38—C37	131.07 (17)
C3—C8—C9—C14	-2.7 (3)	C45—P1—C38—C37	23.33 (18)
C7—C8—C9—C14	175.66 (19)	Ni1—P1—C38—C37	-106.46 (16)
C14—C9—C10—C11	0.3 (3)	C45—P1—C39—C40	89.94 (17)
C8—C9—C10—C11	179.84 (19)	C38—P1—C39—C40	-15.78 (18)
C9—C10—C11—C12	-0.6 (3)	Ni1—P1—C39—C40	-145.03 (15)
C10-C11-C12-C13	0.5 (3)	C45—P1—C39—C44	-87.64 (16)
C11—C12—C13—C14	-0.2 (3)	C38—P1—C39—C44	166.64 (15)
C12—C13—C14—C9	-0.1 (3)	Ni1—P1—C39—C44	37.40 (16)
C12—C13—C14—C1	-179.99 (18)	C44—C39—C40—C41	-0.8 (3)
C10-C9-C14-C13	0.0 (3)	P1-C39-C40-C41	-178.37 (15)
C8—C9—C14—C13	-179.55 (17)	C39—C40—C41—C42	-1.0 (3)
C10-C9-C14-C1	179.97 (18)	C40—C41—C42—C43	1.7 (3)
C8—C9—C14—C1	0.4 (3)	C41—C42—C43—C44	-0.6 (3)
C2-C1-C14-C13	-177.90 (18)	C42—C43—C44—C39	-1.3 (3)
Ni1-C1-C14-C13	3.3 (2)	C40—C39—C44—C43	2.0 (3)
C2-C1-C14-C9	2.2 (3)	P1-C39-C44-C43	179.63 (15)
Ni1-C1-C14-C9	-176.64 (14)	C39—P1—C45—C50	157.71 (17)
C21—P2—C15—C16	-151.15 (17)	C38—P1—C45—C50	-93.51 (18)
C27—P2—C15—C16	101.48 (18)	Ni1—P1—C45—C50	38.04 (19)
Ni1—P2—C15—C16	-31.05 (19)	C39—P1—C45—C46	-28.5 (2)
C21—P2—C15—C20	34.37 (18)	C38—P1—C45—C46	80.25 (19)
C27—P2—C15—C20	-73.00 (18)	Ni1—P1—C45—C46	-148.20 (16)
Ni1—P2—C15—C20	154.47 (14)	C50-C45-C46-C47	0.1 (3)
C20-C15-C16-C17	-0.7 (3)	P1-C45-C46-C47	-173.63 (19)
P2-C15-C16-C17	-175.27 (19)	C45—C46—C47—C48	1.0 (4)
C15—C16—C17—C18	0.1 (4)	C46—C47—C48—C49	-1.4 (4)
C16—C17—C18—C19	0.7 (4)	C47—C48—C49—C50	0.5 (4)
C17—C18—C19—C20	-0.9 (4)	C46—C45—C50—C49	-1.0 (3)
C18—C19—C20—C15	0.4 (3)	P1-C45-C50-C49	173.00 (16)
C16-C15-C20-C19	0.4 (3)	C48—C49—C50—C45	0.7 (3)

